Comment on “How effective and efficient are multiobjective evolutionary algorithms
نویسنده
چکیده
In a recent paper by Tang, Reed and Wagener (2006, hereafter referred to as TRW) a comparison assessment was presented of three state-of-the-art evolutionary algorithms for multiobjective calibration of hydrologic models. Through three illustrative case studies, TRW demonstrate that the Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Epsilon Dominance Nondominated Sorted Genetic Algorithm (ε-NSGAII) 5
منابع مشابه
Multiobjective Imperialist Competitive Evolutionary Algorithm for Solving Nonlinear Constrained Programming Problems
Nonlinear constrained programing problem (NCPP) has been arisen in diverse range of sciences such as portfolio, economic management etc.. In this paper, a multiobjective imperialist competitive evolutionary algorithm for solving NCPP is proposed. Firstly, we transform the NCPP into a biobjective optimization problem. Secondly, in order to improve the diversity of evolution country swarm, and he...
متن کاملReply to J. Vrugt’s comment on “How effective and efficient are multiobjective evolutionary algorithms at hydrologic model calibration?”
We would like to thank Jasper Vrugt for his comment on our recent paper Tang et al. (2006) in which we compare the Strength Pareto Evolutionary Algorithm 2 (SPEA2), the Multi-objective Shuffled Complex Evolution Metropolis algorithm (MOSCEM-UA), and the Epsilon Dominance Nondominated Sorted Genetic Algorithm II (ε-NSGAII) using a statistical metrics-based approach. To frame our response, we wil...
متن کاملMultiobjective Fitness Landscape Analysis and the Design of Effective Memetic
J. Deon Garrett. Ph.D. The University of Memphis. February, 2008. Multiobjective Fitness Landscape Analysis and the Design of Effective Memetic Algorithms. Major Professor: Dipankar Dasgupta, Ph.D. For a wide variety of combinatorial optimization problems, no efficient algorithms exist to exactly solve the problem unless P=NP. For these problems, metaheuristics have come to dominate the landsca...
متن کاملOptimal Choice of Random Variables in D-ITG Traffic Generating Tool using Evolutionary Algorithms
Impressive development of computer networks has been required precise evaluation of efficiency of these networks for users and especially internet service providers. Considering the extent of these networks, there has been numerous factors affecting their performance and thoroughly investigation of these networks needs evaluation of the effective parameters by using suitable tools. There are se...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کامل